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Madison L. Doolittle,1,2 Sundeep Khosla,1,2 and Dominik Saul1,2,3

1Division of Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
2Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
3Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tuebingen, Tuebingen, Germany

The regulation of bone mineral density (BMD) is highly influenced by genetics and age. Although genome-wide association studies
(GWAS) for BMD have uncovered many genes through their proximity to associated variants (variant nearest-neighbor [VNN] genes),
the cell-specific mechanisms of each VNN gene remain unclear. This is primarily due to the inability to prioritize these genes by cell
type and age-related expression. Using age-related transcriptomics, we found that the expression of many VNN genes was upregu-
lated in the bone and marrow from aged mice. Candidate genes from GWAS were investigated using single-cell RNA-sequencing
(scRNA-seq) datasets to enrich for cell-specific expression signatures. VNN candidate genes are highly enriched in osteo-lineage cells,
osteocytes, hypertrophic chondrocytes, and Lepr+ mesenchymal stem cells. These data were used to generate a “blueprint” for
Cre-loxpmouse line selection for functional validation of candidate genes and further investigation of their role in BMDmaintenance
throughout aging. In VNN-gene-enriched cells, Sparc, encoding the extracellular matrix (ECM) protein osteonectin, was robustly
expressed. This, along with expression of numerous other ECM genes, indicates that many VNN genes likely have roles in ECM
deposition by osteoblasts. Overall, we provide data supporting streamlined translation of GWAS candidate genes to potential novel
therapeutic targets for the treatment of osteoporosis. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of
American Society for Bone and Mineral Research.
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Introduction

Osteoporosis is a chronic disorder of low bone mass and
increased fracture risk that is strongly influenced by genetics,

with a high prevalence in aged individuals. Up to one out of three
individuals over the age of 50 will suffer a fragility fracture,(1) which
increases overallmortality risk due to existing comorbidities.(2) Bone
mineral density (BMD), the diagnostic metric for osteoporosis, is a
complex trait largely influenced by genetic variance, with heritabil-
ity estimates for BMD observed as high as 89%.(3) Indeed, the
biggest risk factor of developing osteoporosis is family history.(4,5)

It has been shown that genetic effects are exerted on peak bone
mass(6) aswell as rates of age-related bone loss.(7) Therefore, genetic
studies focusing on bone traits have been a major focus in the
field to identify genes that may regulate bone strength in aged
individuals.

Genome-wide association studies (GWAS) have uncovered
vast amounts of information to understand the genetic regula-
tion of BMD. Over the last two decades, GWAS have identified
over 1000 associated single nucleotide polymorphisms

(SNPs) underlying over 500 genomic loci associated with BMD,
explaining up to 20% of the variance in this phenotype.(8–10) These
loci seek to identify candidate genes that may regulate bone
metabolism, typically reported as genes closest in proximity to
the associated variant (variant nearest-neighbor [VNN] genes). Ini-
tial studies characterizing these genes found roles in bonemainte-
nance using mouse knockout models.(10,11) Additionally, recent
work by Kaya et al. prioritized GWAS genes associated with aging
and fracture risk through integration with bulk RNA sequencing
(RNA-seq) across murine aging.(12) Although important, global
knockout models and bulk RNA-seq fail to resolve cell-specific
gene actions, and thus our understanding of how each gene
mechanistically regulates bone density remains incomplete. Spe-
cifically, it is unclear whether these genes lead to primary (bone-
intrinsic) or secondary (bone-extrinsic or systemic) alterations in
bone metabolism. Even if the gene is linked to bone formation
(executed by the osteoblast), the osteogenic lineage is highly
heterogeneous,(13–16) leading to complexity even within broad
cell categories. Cell-specific gene expression analyses for each
candidate gene would greatly augment experimental design for
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functional follow-up studies using tissue- and cell-specific knock-
outs, which may generate novel therapeutic targets for the treat-
ment of osteoporosis. However, until this is accomplished, the
further characterization of GWAS-associated candidate genes will
remain limited.

In this study, we addressed this problem by investigating the
cell- and age-specific gene expression profiles of GWAS VNN
genes in established bone cell types. We leveraged both bulk
and single-cell RNA-seq (scRNA-seq) datasets to pinpoint cell-
specific gene expression of current candidate genes in addition
to their age-related expression profile. We aim to have our data
serve as a “blueprint” for future mechanistically driven functional
studies of GWAS-associated genes, with the goal of streamlining
the genetic discovery pipeline from genomic association to thera-
peutic target.

Materials and Methods

Curation of GWAS VNN candidate genes

Candidate genes were derived from the results of a previously pub-
lished GWAS dataset.(10) Briefly, this study identified 1103 indepen-
dent SNPs within 515 genomic loci associated with calcaneal
estimated bone mineral density (eBMD) using the UK Biobank
cohort of 426,824 participants. Candidate genes were selected as
the gene closest to the associated variant with the smallest
p value of all conditionally independent variants within the same
locus, generating 514 human candidate genes. Mouse orthologs
were identified (SYNGO,(17) bioDBnet(18)), while removing noncod-
ing and microRNAs, resulting in 436 candidate genes for down-
stream analyses in murine datasets (Supplementary Table S1).

Analysis of mRNA sequencing data

The enrichment of VNN genes was tested in two publicly avail-
able bulk mRNA-Seq datasets (bone and bone marrow: Tabula
Muris Consortium GSE132040,(19) bone: n = 12 [months 6–9]
young versus n = 14 old [months 21–27]; marrow: n = 11 young
[months 6–9], n = 13 old [months 21–27]).

Raw counts were converted into a matrix before DESeq2
(1.34.0) was used. Determination of differentially expressed
genes (DEGs) was performed using DESeq2 (lfcThreshold = 0,
alpha = 0.1, minimum count = 0.5). An example of an RNA-seq
analysis vignette is provided as R notebook in our previous
study.(20) Gene Set Enrichment Analysis (GSEA, version 4.2.2,
Broad Institute, Inc., Massachusetts Institute of Technology, Cam-
bridge, MA, USA, and Regents of the University of California,
Berkeley, CA, USA) was performed with default settings (1000
permutations for gene sets, Signal2Noise metric for ranking
genes).

scRNA-seq analysis

Enrichment of VNN genes in distinct cell populations was deter-
mined by analyzing a publicly available single-cell sequencing
dataset from Baryawno et al. (GSE128423(15)), as demonstrated
in Saul et al.(21)

Cells with at least 500 unique molecular identifiers (UMIs),
log10 genes per UMI >0.8 and >250 genes per cell, and a mito-
chondrial ratio of less than 20% were extracted, normalized,
and integrated using the Seurat package (version 4.0.6) in R 4.0.3.

The cell annotation was provided by the authors. Detailed
information on sample characteristics, conditions, and cell

numbers per cluster from the bone andmarrow scRNA-seq data-
set is summarized in Supplementary Table S2.

The normalization, scaling, and clustering followed the recom-
mendations of the Seurat package.(22) In particular, normalization
and scaling were performed with NormalizeData and ScaleData,
followed by an SCTransformation. Comparisons between TOP25
and BOTTOM75 sampleswere performed using the “FindMarkers”
function (Seurat package) and the MAST package (1.16.0,(23) logfc.
threshold = 0, test.use=”MAST”, only.pos = FALSE, min.
pct = 0.0). For pairwise comparisons, a nonparametric Wilcoxon
signed-rank test was applied (ggpubr 0.4.0). The top genes per
cluster are demonstrated in Table 1. GSEA was conducted using
clusterProfiler (3.18.1). Heatmaps were designed using the DEP
package (1.1.5). Column bars were created using the scater pack-
age (1.18.6). Bubble plots were designed with the ggplot2 (3.3.5)
package, while regulatory elements were identified following the
SCENIC package recommendations (1.2.4,(24)).

Genome visualization

The murine genome mm10 (Grcm38) was depicted with bioviz-
Base (version 1.44) and GenomicRanges (version 1.48), as well
as ggbio (version 1.20.1). The genomic location of marker genes
was taken from the Genome Reference Consortium (National
Institutes of Health [NIH], date: January 9, 2012). The skeletal phe-
notype was assessed by the references from Table 2.

Statistics and graphs

Statistical analyses were performed using a D’Agostino–Pearson
test for normality. If the D’Agostino-Pearson test was passed, an
unpaired t-test was performed. Otherwise, a Mann–Whitney test
was performed (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001). Correlation
analyses were performed with Spearman’s correlation.

Graphs were designed using GraphPad Prism 9.2.0 (GraphPad
Software, Inc., San Diego, CA, USA), BioRender.com, and R (4.0.3).

Results

Age-dependent assessment of VNN-associated genes

Our list of GWAS VNN candidate genes was curated from a recent
study,(10) as detailed in the Methods. To investigate which genes
impact the aging bonemicroenvironment, we screened VNN can-
didate genes for age-dependent differential expression (Fig. 1A).
We utilized the extensive bone and marrow RNA-seq datasets
from the Tabula Muris Senis, which provides a transcriptomic atlas
of aging mouse tissues.(10,46) In both the bone (Fig. 1B) and bone
marrow (Fig. 1C), the vastmajority of geneswere enriched in aged
(21- to 27-month-old) compared to young (6- to 9-month-old) ani-
mals. We next assessed all 436 of our VNN candidate genes with
regard to young versus old bone (Fig. 1D) and bone marrow
(Fig. 1E). In both compartments, VNN genes showed a significant
enrichment in old mice (two-way ANOVA: p < 0.0001 and
p = 0.0085, respectively). When used as a gene set, a significant
enrichment in the old compared to the young cohort was
detected for the VNN gene list (Fig. S1A,B. Bone: NES 1.80,
p value 0.0;marrow: NES 1.47,p value: 0.0). The VNN list also shows
a significant upregulationwith age in bone (p value 0.004), while a
significant difference is missed in marrow (p = 0.289, Fig. S1C,D).
When just the significant genes were sorted according to their
fold-change (Fig. 1F), Synpo2, Coro6, and Col1a2 within the bone
and Axlwithin themarrow environment appeared as the top hits.
When overlapping the upregulated genes from each
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Table 1. Cell-Type Categorization of GWAS VNNGenes Based on scRNA-seq Cluster Enrichment, Annotatedwith Cre-LoxpMouseModels
for Cell-Specific Functional Validation of Each Gene

Cluster Gene
Log2FC cluster
expression In vivo Cre-Loxp system

Pericytes Bcas3 1.519 Lepr-Cre,(48) Tagln-Cre,(49) Nestin-Cre(50)/-CreERT2(51)

Ppp1cb 1.238
Zfhx3 1.138
Synpo2 1.072
Nab1 0.803
Irs2 0.709
Inpp5a 0.635
Abr 0.580
Chd4 0.345
Trim2 0.329
Cnot4 0.295

Endothelial cells Kdr 2.138 Tie2-Cre(52)/-CreERT2,(53) Cdh5-Cre(54)/-CreERT2(55)

Ehd4 1.341
Tcf4 1.264
Sptbn1 1.216
Plpp1 1.144
Calcrl 0.902
Lrrc8c 0.891
Tgfbr2 0.882
Jup 0.872
Cmip 0.851
Palmd 0.830
Ctnnb1 0.764
Dab2 0.744
Tanc1 0.645
Nfe2l1 0.408
Tulp4 0.396
Mkln1 0.313

Fibroblast Col1a2 0.985 Fsp1(S100a4)-Cre,(56) Acta2-Cre(57)

Axl 0.958
Aqp1 0.948
Ntn1 0.676
Sema3e 0.579
Prrx1 0.556
Ahnak 0.461
Emp1 0.457
Klf4 0.455
Tmem119 0.404
Thbs3 0.397
Rhoj 0.371
Itgb5 0.320

Lepr MSC H2-K1 1.851 Lepr-Cre,(48) Cxcl12-CreERT2(58)

H2-D1 1.591
Ghr 1.291
H2-Q7 1.216
Plpp3 1.215
Ptprd 1.205
H2-Q10 1.181
Ebf1 1.154
Gja1 1.039
Tgfbr3 1.009
Mpdz 0.915
Plxdc2 0.901
Bicc1 0.901
Klf6 0.893
Fosb 0.814
Bmp4 0.783
Rbms3 0.762
Dlc1 0.709
Gpc6 0.701
H2-Q4 0.594
Klf9 0.461

(Continues)
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Table 1. Continued

Cluster Gene
Log2FC cluster
expression In vivo Cre-Loxp system

Tcf7l2 0.446
Med13l 0.441
Rbpj 0.431
Emp2 0.407
Nfia 0.372
Stard3nl 0.322

MSC Mgmt 1.505 Prrx1-Cre,(59) Cxcl12-CreERT2,(58) Pdgfra-CreERT2,(60) Pdgfrb-
Cre(61)Cotl1 1.403

Dnmt3a 1.188
Fli1 1.066
Myh9 0.951
Capzb 0.746
Fbxl2 0.559
Ptprj 0.444
Meis1 0.443
Prelid1 0.438
Ube2l3 0.431
Litaf 0.397
Ank3 0.365
Cyfip1 0.348
Hspa4 0.294

OLC 1 Lrp4 1.728 Col1a1-Cre,(62) Osx-Cre(63)/-CreERT2,(64) Runx2-Cre, Ocn-Cre(65)

H2-Q6 0.939
Fat1 0.908
Esr1 0.613
Wls 0.488
Adam12 0.461
Sema6d 0.454
Foxn3 0.365
Epb41l2 0.360
Irf2bp2 0.292
Bmp5 0.282

OLC 2 Smoc1 0.774
Frzb 0.557

Osteocyte Mettl7a1 0.346 Dmp1-Cre(66)/-CreERT2,(67) Sost-Cre(68)/-CreERT2(69)

Zbtb38 0.328
Mineralizing
osteocyte

Tnfrsf11b 1.937
Mgp 1.486
D630045J12Rik 0.947
Ngef 0.665
Trps1 0.558
Tmed10 0.399
Tmem43 0.386
Mbnl1 0.363
Msmo1 0.314
Cd109 0.296
Pdgfc 0.282
Meox2 0.280
Nfix 0.272
Ltbp3 0.267
Etfa 0.259
Iqgap1 0.256

Chondro-prol/rest Bcl11a 0.742 Sox9-Cre,(70) Col2a1-Cre(71)/-CreERT2(72)

Rangap1 0.522
Baz1a 0.425
Psmb3 0.391
Fam111a 0.381
Zfp800 0.271
Ubap2 0.258
Naa38 0.255

Chondro-progen Smoc1 0.774
Frzb 0.557

(Continues)
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compartment with at least a fold-change of 0.5, just five genes
were among the top hits (Col1a2, Tmem119, Sp7, Bmp4, Irx5)
(Fig. 1G). In summary, GWAS VNN candidate genes exhibited
upregulated expression with age in both bulk sequencing com-
partments (bone: 18 out of 434 with padj < 0.05 and marrow:
8 out of 434 with padj < 0.05), generating an additional brief list
of top hits in both compartments, with little overlap.

Single-cell sequencing reveals cellular origin of GWAS
VNN genes

Next, we aimed to verify the expression profile of each candidate
gene at single-cell resolution. For this purpose, we utilized a
recently published scRNA-seq dataset containing bone and mar-
row cells isolated from eight C57Bl/6 mice (age: 8 to 10 weeks)
(Fig. 2A).(15) We present the clustering and marker genes
elsewhere.(21) Cells with high expression of our 436 GWAS
VNN candidate genes were enriched within the 35,368 total

cells in this dataset. Interestingly, hypertrophic chondrocytes,
mineralizing osteocytes, and osteo-lineage cells (OLC1 and
OLC2) showed the highest overall enrichment scores (Fig. 2B).
We noted a tendency of mesenchymal cell types to enrich
higher in the VNN genes, particularly in committed cell popula-
tions (e.g., mineralizing osteocyte, chondro-hyper, OLC1/2)
(Fig. 2C). The selection of a “top25%” cluster, which contains
the top 25% of cells with the highest VNN enrichment score,
demonstrated a high percentage of cells within the hypertro-
phic chondrocyte and OLC2 clusters (Fig. 2D). These data dem-
onstrated that GWAS VNN genes tended to be expressed in
committed osteo- and chondrogenic cell types rather than
stem or immune cells, with the exception of Lepr mesenchymal
stem cells (MSCs). By just enriching the significantly upregu-
lated genes with aging (Fig. S3A), or even the top genes
(Fig. S3B,C), the enrichment focuses on the same populations
as suggested in Fig. 2C. This suggests that, while the level of
gene expression differs throughout aging, the cell types
expressing VNN genes remain largely consistent.

Table 1. Continued

Cluster Gene
Log2FC cluster
expression In vivo Cre-Loxp system

Chondrocyte E2f1 1.102
Stk3 0.746
Trim27 0.645
Hdac4 0.479
Cdh6 0.388
Zfp113 0.337
Mepe 0.335
Irx5 0.302
Hecw2 0.270
Eya1 0.265

Chondro-hyper Col11a1 2.607 Acan-CreERT2,(73) Col10a1-Cre(74,75)

Papss2 1.992
Cox4i2 0.832
Ptch1 0.830
Rab28 0.672
Grb10 0.605
Sox5 0.544
Cdk6 0.532
Rspo3 0.487
Sp7 0.416
Mrps28 0.349
Tmem263 0.345
Hs3st3b1 0.345
Kcnma1 0.335
Dlx5 0.325
Sema3d 0.312
Sobp 0.296
Itpr2 0.294
Supt3 0.268
Fgfrl1 0.267

Lymphocyte Arhgap15 0.790 Lck-Cre,(76) Thy1-Cre,(77) Cd19-Cre(78)

Dock8 0.766
Rbm5 0.719
Stk10 0.563
Nt5c2 0.505
Smad7 0.403
Ctps 0.315
Arid1a 0.314
Smarcad1 0.282
Rere 0.281
Foxk2 0.263
Atxn7l1 0.261
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Fig. 1. GWAS VNN candidate gene expression increases in bone andmarrow in old mice. (A) Schematic workflow demonstrating experimental approach.
(B, C) In both bone and bonemarrow, a vast number of genes are upregulated in aging (GSE132040 (19,46), bone: n = 12 [months 6–9] young versus n = 14
old [months 21–27]; marrow: n = 11 young [months 6–9], n = 13 old [months 21–27]). (D) All GWAS-associated genes show an upregulation in young
versus old mouse bone (two-way ANOVA p < 0.0001) and (E) mouse bonemarrow (two-way ANOVA p = 0.0085). (F) The top significantly increased genes
from the VNN genes (padj < 0.05) and all genes with a >0.5 FC fold-change (G) in bone and marrow as their overlap are displayed as a VENN diagram.
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Using these data, we assigned cell-specific in vivo Cre-recom-
binase mouse models for the functional downstream analysis of
candidate gene mechanisms (Table 1, extended with top
expressed genes as Supplementary Table S1). We should

emphasize that, although each Cre- model can specifically
target the described cell type, each Cre may recombine in
unintended cell types. For example, the Pdgfrb-Cre (fibro-
blast) has been shown to also recombine in adipocyte

Fig. 2. GWASVNNgenes are enriched in committedmesenchymal cell types. (A)We used the scRNA-seqdataset fromBaryawno et al. consisting of 35,368 cells in
17 distinct cellular clusters, depicted as a t-distributed stochastic neighbor embedding (tSNE) ((15), GSE128423). (B) Within these 17 clusters, the VNN genes were
enriched in both bone and marrow (50% transparency: marrow). The overall highest enrichment occurs within hypertrophic chondrocytes, mineralizing osteo-
cytes, and osteo-lineage cell types 1 and 2 (OLC1, OLC2). (C) The enrichment score is plotted on the tSNE, demonstrating the higher enrichment of certain mes-
enchymal populations, which (D) account for the majority of the top 25% of VNN-gene-enriched cells. Summarizing, the mesenchymal cells were endued with
overall higher enrichment, while hypertrophic chondrocytes and OLC2 contained the highest percentage of VNN-gene expression.
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Fig. 3. Legend on next page.
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progenitors, pericytes, and MSCs.(47) Therefore, proper lineage
tracing, controls, and follow-up experiments should be
applied before conclusions are made.

Cellular composition of key regulatory genes predicted by
VNN genes

The top 25% VNN-enriched cells were separately analyzed, and
within these, MSCs, hypertrophic chondrocytes, and OLC 1 and
OLC2 cells represent the largest proportions (Fig. 3A, Supple-
mentary Fig. S2). To verify which of the 436 GWAS VNN genes
were of greatest importance, we compared the total gene
expression per cluster and the total cells within each cluster
that expressed these genes (Fig. 3B, Fig. S5A). The gene Mgp
was substantially upregulated in many cell types: Hypertrophic
and prehypertrophic chondrocytes, mineralizing osteocytes,
and chondrocytic progenitors exhibited a high expression of
Mgp, while the expression was lower in fibroblasts and Lepr
MSCs, although a high percentage of cells within these clusters
expressed Mgp.

To investigate additional genes that may have roles in cells influ-
enced by VNN genes, we identified strongly coexpressed genes
within the top 25% VNN gene-enriched cells, termed “non-VNN
co-expressed” genes. Pericytes, fibroblasts, and Lepr MSCs
expressed high levels ofMalat1, a long noncoding RNA with estab-
lished roles in regulating angiogenesis(79) and osteogenesis,(80,81)

with its upregulation shown to alleviate ovariectomy-induced bone
loss in mice.(37) Within the hypertrophic chondrocytes and mineral-
izing osteocytes, Sparc and Dcn, respectively, showed the highest
expression (Fig. 3C, Fig. S5B). Sparc, encoding the protein osteonec-
tin, is a secreted ECM protein known to be expressed in osteoblasts
and chondrocytes(82) that is critical for osteogenesis; Sparc knockout
mice exhibit an age-dependent reduction in bone quantity,(38)

intervertebral disc degeneration,(83) cataracts,(84) and adiposity.(85)

Dcn encodes the ECM protein decorin, which is found in all major
type I and II collagenmatrices, particularly in the skeleton.(39) There-
fore, cells positive for these marker genes may be most relevant in
their intrinsic expression of VNN genes, suggesting that GWAS can-
didate gene functions are strongly linked to regulating ECM
production.

A deeper analysis of these VNN-gene-enriched cell types was
performed by regulatory network interference and clustering
using the SCENIC package.(86) We found the key regulators for
each cluster and reordered the cell types based on their regulatory
units. While Nfe2 shows the largest area under the curve (AUC)
coverage of MSCs, reaching within the mineralizing osteocyte
cluster, Pparg and Sox17 mostly cover endothelial cells
(Fig. 3D–F). All of the regulons are separately shown in Supple-
mentary Fig. S4. Although Pparg is an adipogenic regulator, it
has also been observed to be expressed in endothelial cells in
other scRNA-seq datasets of the bonemicroenvironment.(87) Inter-
estingly, Runx3 and Sox9 mostly influence hypertrophic and

prehypertrophic chondrocytes (Fig. 3E,F). To further validate the
relevance of Sox9 and Sparc for the osteo-lineage cells and chon-
drocyte populations, we analyzed the coexpression of the regulat-
ing element (Sox9) with the osteonectin coding gene (Sparc),
which was highly significant (R = 0.86, p < 0.0001, Fig. 3G). The
overall Sparc expression was indeed highest in these two clusters,
but Sparc was expressed at a certain level ubiquitously, demon-
strating its widespread role in osteogenesis (Fig. 3H).

The top 50 genes in the VNN- and non-VNN-gene groups were
further characterized based on their effect on the skeletal pheno-
type according to the literature. For 20 of these genes, previous
mechanistic studies confirmed roles for each gene in the regula-
tion of bone mass as beneficial, harmful, or indecisive (contra-
dicting results) (Fig. 4, Table 2).

In summary, by more extensively characterizing GWAS VNN-
gene enriched cell populations, we were able to identify key reg-
ulatory units that may putatively direct osteogenic gene expres-
sion. The osteo-lineage population showed a Sox9-enhanced
upregulation of Sparc, a gene known to be critical in maintaining
the integrity of skeletal and other connective tissue with
age.(88,89)

Fig. 3. Characterization of top 25 GWAS VNN-gene-enriched cells. (A) Top 25% VNN-gene-enriched cells (n = 8842) and cell clusters plotted in UMAP
coordinates. (B, C) Gene expression (y-axis and dot size) and number of positive cells (x-axis) in each cluster (color code same as in A) for the top 25%
VNN (B) and non-VNN coexpressed (C) genes. (D) The regulatory elements of each cluster are demonstrated with the regulon activity per cluster and reg-
ulator colored in red. Arrowheads point to the key regulators used for further analysis. (E) Key regulators were used to calculate a tSNE representation of all
cell types fromA. (F) The key regulators Pparg and Sox17 are shown in blue,Nfe2 in green, and Runx3 as Sox9 in red, visualized on the regulator-based tSNE.
(G) The regulating element Sox9 correlates with Sparc expression within all top 25% GWAS VNN-gene-expressing cells (R = 0.86, p < 0.0001). (H) Sparc
expression is highest in hypertrophic chondrocytes and osteolineage cells (OLC 2).

Fig. 4. GWAS VNN and non-VNN coexpressed genes in the murine
genome and their impact on skeletal homeostasis. Genome coordinates
from the highest expressing genes, demonstrating VNN (black dot) and
non-VNN coexpressed (gray dot) genes that were found within the liter-
ature to be beneficial (green font), harmful (red font), or reported to be
both/indecisive (blue font) on the murine skeleton (Table 2).
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Discussion

Our understanding of the genetic regulation of bone mass has
been profoundly expanded through GWAS studies on BMD.
The statistical power from large cohorts of individuals has identi-
fied candidate genes likely to regulate bone density and whose
variance is therefore potentially involved in the development
of osteoporosis.(90) As important as these studies are, however,
there is a need to functionally validate and characterize addi-
tional candidate genes, as there are a number of unmet needs
in themanagement of osteoporosis, particularly in anabolic ther-
apies.(91,92) Once the mechanistic role of each candidate gene in
bone metabolism is established, then translational studies can
aim to leverage these genetic determinants into therapeutic tar-
gets to alleviate bone loss, as has been done with romosozumab
(SOST), denosumab (RANKL), and DKK1 inhibitors.(93–95) As osteo-
porosis is a disease predominantly affecting the elderly, the need
to understand how these candidate genes behave with age is
equally important. However, many technical challenges impede
the pipeline of functional validation from GWAS candidate
genes, hindering our ability to understand how each genemech-
anistically influences bone metabolism.

In this study, our aim was to simplify the progression from
GWAS-associated genes to the laboratory setting in studying
age-related bone loss. Studies with a similar aim have been per-
formed by others, including the Alliston laboratory(12); however,
we sought to build upon previous work through the lens of
single-cell profiling. We first compared candidate gene expres-
sion in bone tissues across chronologically aged mice to deter-
mine which genes may have age-associated functions in
regulating bone mass. We found that many GWAS VNN genes
exhibited upregulation in their expression with age, rather than
downregulation. This could be due to a number of factors,

including, but not limited to, increased bone turnover, upregula-
tion of aging processes such as senescence, or increased transcrip-
tion due to extrinsic factors influencing bone mass. Nevertheless,
these age-associated changes suggest that the affected genes have
some role in the maintenance, or degradation, of bone tissue in
aged mice. Interestingly, more candidate genes were upregulated
in the bone tissue compared to the bone marrow. This indicates
that age-related gene expression changes may be occurring in
moremature bone-resident cells, such as osteocytes or osteoblasts,
compared to stem or immune cells, which reside in the marrow. Of
the genes found to be upregulatedwith age in both bone andmar-
row, nearly all of them have established roles in bone formation,
such as Sp7,(96,97) Tmem119,(98) Bmp4,(99) and Col1α2(100); moreover,
Sp7 and Col1α2 have established roles in vivo that indicate they are
essential formusculoskeletal development. Tmem119, however, has
only been characterized in vitro, while its role in organismal bone
metabolism remains unclear. Although Bmp4 is a member of the
bone morphogenic protein family, which act as ligands stimulating
bone formation, loss of Bmp4 does not influence developmental
skeletogenesis or fracture repair in adult mice.(101,102) However,
Bmp4 expression has been observed to increase with age(103) and
stimulate osteoclastic bone resorption,(104) particularly when
osteoblast-derived.(105) Additionally, polymorphisms in Bmp4 have
been associated with altered BMD in elderly individuals, at 70 to
85 years of age, with no association with fracture.(106) This suggests
that Bmp4may have a role in bone loss in aged mice and, perhaps,
humans that remains incompletely understood.

It is important to note that the ages we used represent skele-
tally mature (6- to 9-month-old) and aged (21- to 27-month-old)
mice, as this removes confounding variables from developmen-
tal changes observed before 4 to 6 months. Many candidate
genes arising fromGWAS studies are being validated in the Inter-
national Mouse Phenotyping Consortium (IMPC) as well as inde-
pendent laboratory studies. However, nearly all candidate gene
knockout mice are being phenotyped at 4 to 6 months, which
corresponds to middle age in humans and is typically before
the onset of age-related bone loss in both species.(107–109) We
wish to emphasize that this approach by the IMPC should not
be mistaken as uninformed, as this age is typically when peak
bonemass is observed in mice, and GWAS for BMD typically con-
trol for age as a covariate. Even so, due to the lack of an aging
component in these follow-up studies, the effects of many candi-
date genes on age-related bone loss remain unknown.

At the single-cell level, we found that GWAS VNN candidate
gene expression was enriched in committed mesenchymal
cells. Hypertrophic and prehypertrophic chondrocytes,
osteo-lineage cells, and mineralizing osteocytes harbored a
majority of candidate gene expression, although other clus-
ters such as Lepr+ MSCs, fibroblasts, and pericytes were
enriched as well. Additionally, immune clusters in this dataset
showed no enrichment of candidate gene expression, sug-
gesting that these GWAS VNN genes likely act intrinsically
within the mesenchymal lineage. These data provide a map
for genes to be tested using cell-specific mouse models to
knock out each gene according to its cluster-specific expres-
sion, as outlined in Table 1. This will be critical in designing
functional validation experiments to study the mechanistic
action of each candidate gene.

It is postulated that the main cause of impaired bone forma-
tion is either through (1) inhibited mesenchymal stem cell differ-
entiation and commitment, leading to a reduced number of
osteoblasts, or (2) intrinsically impaired osteoblast function,
which reduces the osteoblast’s capability of producing,

Table 2. Summary of Current Skeletal Phenotype Data for GWAS
VNN and Coexpressed Genes

Gene
symbol Main cell type

Skeletal
role Reference

Mgp Mineralizing osteocyte + (25)
Col1a2 Fibroblast, Chondro-

hyper
+ (26)

Col11a1 Chondro-hyper + (27)
Ebf1 Lepr MSC + (28)
Klf4 Fibroblast � (29)
Aqp1 Fibroblast +/� (30,31)
Gja1 Lepr MSC + (32)
Tcf4 Endothelial cells + (33)
Tnfrsf11b Mineralizing osteocyte + (34)
Ctnnb1 Endothelial cells + (35)
Nfix Mineralizing osteocyte � (36)
Malat1 Lepr MSC + (37)
Sparc Chondro-hyper + (38)
Dcn Mineralizing osteocyte + (39)
Cst3 Chondro-prehyper + (40)
Fth1 Fibroblast � (41)
Spp1 OLC1 � (42)
Cytl1 Chondro-progen � (43)
Prg4 Chondro-progen + (44)
Fos Osteocyte � (45)

Abbreviation: MSC = mesenchymal stem cell.
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depositing, and mineralizing extracellular bone matrix. For rea-
sons given in what follows, our data suggest that a majority of
candidate genes are likely to be more responsible for the
latter function in regulating ECM proteins. In our GWAS
VNN-gene-enriched cells, we found that the highest-expressed
non-VNN gene was Sparc, which encodes the ECM protein osteo-
nectin that is crucial for bone mass maintenance.(110) Addition-
ally, the highest expressed VNN genes across many clusters
wereMgp and Col1α2, which encode ECM proteins. Col1α2 is well
known to be critically important for bone formation, and its
mutation can lead to osteogenesis imperfecta.(111) Mgp, how-
ever, remains an intriguing candidate gene for future study in
bone.Mgp, or matrix gla protein, is closely related to osteocalcin
(Bglap: “bone gla protein”), has been associated with chondro-
genesis(112) and arthritis,(113) and promotes in vitro bone forma-
tion through Wnt signaling.(25) In agreement with our data,
expression of Mgp has been found in both chondrocytes and
vascular cells, with its function differing in each cell type.(114)

Global loss of Mgp leads to premature death by 2 months of
age through arterial calcification, so their true bone phenotype
remains unknown. Therefore, cell-specific targeting of Mgp in
either chondrocytes or osteocytes may provide important data
with regard to the role of Mgp in the maintenance of bone ECM
and bone formation. Moreover, this co-expression approach may
be valuable in identifying noncoding RNAs that contribute to
the regulation of BMD, as we found Malat1—a long noncoding
RNA (lncRNA) that regulates osteogenesis(37,79–81,115)—as highly
co-expressed with VNN genes.

Illustrating the key regulatory subunits in the GWAS VNN-
gene-enriched population, we identified Sox9 as a crucial
regulatory transcription factor within the osteo-lineage cell
population. The importance of Sox9 has been demonstrated
in neurogenesis(116) and auditory hair cell development.(117)

Sox9 is known to be a major fate determinant in MSCs that
undergo chondrogenesis and osteoblastogenesis.(118) We
verified its importance for the osteoblast-secreted SPARC
protein, which enhances bone formation.(110) In addition,
mutations or polymorphisms in Sparc lead to idiopathic
osteoporosis and osteogenesis imperfecta.(110,119)

This study has several limitations. One is that the candidate
genes used in our in silico analyses may not necessarily be causal
to the associated genomic locus. GWAS-associated loci typically
lie in intergenic regions, making it difficult to determine which
candidate gene underlies the association with BMD. Additionally,
it has been shown that more than one gene may contribute to
one genomic locus,(120) further confounding candidate gene
selection. Therefore, although our study thoroughly investigated
over 400 associated genes, there may be other candidate genes
associated with BMD that were not covered. However, even in
such studies applying eQTL colocalization(121) and chromatin
conformation capture,(122) this issue remains a factor, as the
contributions of other genes cannot be excluded. For example,
based on functional validation in cells and in vivo, the causal
gene underlying the CPED1-WNT16-FAM3C locus (location:
7q31.31) has been assigned to both neighboring genes
(WNT16,(123) FAM3C,(124) CPED1(125)) and a gene identified
through Capture C and ATAC-Seq (ING3(122)). This suggests that
nearest-neighbor genes probably cannot be excluded as con-
tributing genes until proper functional validation. This is
reflected in GWAS manuscripts, which list the nearest gene to
each locus as a standard output. Moreover, in a recent study
combining a transcriptome-wide association study (TWAS) and
eQTL localization to investigate causal GWAS genes, the authors

found that this combinatory technique did not perform as well as
prioritizing genes based on their proximity to GWAS loci.(121)

Thus, although we agree this is a limitation of our study, it is a
limitation shared by the GWAS field and must not impede the
downstream testing of candidate genes, which this manuscript
seeks to facilitate. Additionally, the GWAS dataset we utilized
may not capture a diverse genetic makeup, as the UK Biobank
cohort consists largely of individuals of white ethnicity (94.6%).
Nonetheless, candidate genes will continue to be predicted in
future GWAS on new cohorts to address these limitations, so
we reasoned that studies on any existing cohort will have these
limitations. In line with our goal, our work established a frame-
work that can be reapplied in future GWAS to accelerate the
validation pipeline of candidate genes. Another limitation is that
the differences found in the Tabula Muris Senis are mostly due to
differences in the cellular composition of organs rather than
transcriptional differences, even if cell-type normalization and
scaling reduce that bias.

In summary, this study provides data in translating the large
number of GWAS-associated candidate genes to a laboratory
perspective for the study of age-related bone loss. We found that
GWAS VNN candidate genes were more likely to be upregulated
with age and that many genes with age-associated differential
expression had unexplored roles in age-related bone loss.
Through enrichment of GWAS candidate gene expression in
scRNA-seq data, we categorized the top expressed genes by cell
type and annotated Cre-loxp systems for immediate use in the
functional characterization of each candidate gene. We found
that a majority of clusters expressing these genes were commit-
ted chondro- or osteogenic cell types. Of these cell types, the
defining characteristics appeared to be the expression of ECM
proteins, specifically Sparc. Additionally, the highest expressed
GWAS VNN genes in these enriched cells appeared to encode
ECM proteins, indicating that they were involved in the deposi-
tion and mineralization of bone matrix. Overall, this work pro-
vides further insights into the characterization of GWAS
candidate genes and may help to bridge the gap between
genetic and translational studies of osteoporosis, with the goal
of streamlined development of therapeutic targets for the
treatment of age-related bone loss.
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